
Which company has had the greatest 
effect on the field of Computer Science 
and Consumer Computing: Apple 
Incorporated or Bell Laboratories?

Contents
Abstract.................................................................................................................................................1

Introduction..........................................................................................................................................2

Discussion.............................................................................................................................................3

Chapter 1 – Bell Labs.......................................................................................................................3

Introduction to Bell Labs..............................................................................................................3

UNIX............................................................................................................................................3

The ED Text editor.......................................................................................................................5

C Programming Language............................................................................................................6

The BC Calculator........................................................................................................................8

Chapter 2- Apple Inc........................................................................................................................9

Apple and the mouse....................................................................................................................9

Mac OS.......................................................................................................................................10

The Lightning Connector............................................................................................................11

M-Series Silicon Chips...............................................................................................................11

File Systems................................................................................................................................12

Conclusion..........................................................................................................................................13

Project Evaluation..............................................................................................................................13

Literature Review...............................................................................................................................14

The Bell System Technical Journal................................................................................................14

My own experiences with Bell Labs software...............................................................................15

The C Programming Language (Book)..........................................................................................15

Apple’s Own Documentation.........................................................................................................16

Bibliography.......................................................................................................................................16

Abstract
Apple Inc., as a company, is a household name. However, another organisation, Bell Laboratories, 
could be said to have had just as large, if not larger impact on the world of Computer Science and 
Consumer Computing. This Extended Project discusses several of the developments made at both 
companies, such as the UNIX operating system, the C Programming Language, the BC calculator, 
and the ED Text editor for Bell Labs, and the Popularisation of the Computer Mouse, the MacOS 



operating system, the lightning connector and the M1 and M2 silicon chips for Apple Inc. 

While this project has not succeeded in creating a full account of the hundreds of developments 
made by both companies, it aims to collate several of the most important ones for the reader’s 
consideration. This project concludes that, while both companies have had a great deal of impact on 
their respective fields, the evidence that this project presents points towards Bell Laboratories being 
the slightly more influential company. The intended audience for this project is anyone with any 
interest in the use of computers, or anyone interested in knowing more about the history and the 
inner workings of the devices they use on a daily basis. It is not necessarily intended for subject 
experts, and I have tried where possible to use language and terminology that would be somewhat 
accessible to someone without any degree of expertise in computer science. 

Introduction
This extended project is about which company has had the greatest effect on the field of Computer 
Science and the field of consumer computing: Apple Incorporated or Bell Laboratories. Apple Inc. 
is a significant multinational technology company with a market cap of 2.95 trillion USD as of 
November 2023. They manufacture large quantities of consumer-focused hardware including 
tablets, smartphones, and desktop computers, and develop software focused on a seamless user 
experience (UX/UI), such as the OSX operating system (OS) and application software such as 
Terminal (A terminal emulator designed for software developers and system administrators). Bell 
Labs is a research and scientific development company owned by Nokia. Previously known as 
AT&T Bell Laboratories, they acted as the research and development (R&D) division for AT&T 
(American Telephone and Telegraph company), presiding over the early stages of the field of 
Computer Science, and working at the forefront of electronic communications and technology.

Computer Science is a scientific field concerned with the inner workings of electronic computers. 
This includes topics such as operating systems (the software that runs on a computer to allow other 
programs to run, notable examples being Microsoft’s Windows or Google’s Android), programming 
(writing instructions for a computer), networking (connecting computers together to share hardware 
and information in the most efficient manner possible), and formal logic (a formalisation of the 
logic that humans apply to situations on a day-to-day basis).

In this extended project, “consumer computing” refers to the computers sold to the average buyer, 
and the experience that those computers give to those users. In this case, this also includes the use 
of computers by businesses, governments, academic organisations and other non-computer science 
focused organisations.

I have chosen this topic for several reasons: firstly, I am working towards an A-level in Computer 
science, and secondly because in my own work, I have used a great deal of the technology 
developed by Bell Labs. In my opinion, it has proved to be extremely useful, in many cases 
becoming the de-facto industry standard for that particular task. I have also used some (albeit less) 
Apple technology in my work as a musician: the recording studio that I have used in the past uses 
almost exclusively Apple products: both hardware and software. Furthermore, I am deeply 
interested in the field of computer science, and plan on continuing with it into university, perhaps 
pursuing a qualification in either Computer Science, or a related field.

In my research for this extended project, I have consulted numerous sources. First, I looked for 
scientific papers (mainly using Google Scholar), that discuss different developments that the two 
companies have made. This includes developments such as the C programming language for Bell 
Labs, and the Swift programming language for Apple Inc. I then looked online for subject experts in 
the concerned fields, and found the channel “Computerphile” on YouTube. This channel has 
hundreds of videos made by experts in the fields of computer science, such as Professor David 



Brailsford, Dr Steve Bagley and Dr Michael Pound of the University of Nottingham. In these 
videos, they extensively mention both the developments made at Bell Labs and Apple Inc., and they 
have been a vital source of information and opinion for this extended project.

Furthermore, I have done my own experimentation with some of the more modern, Bell-Labs 
inspired tools, including the daily use of the GNU/Linux Operating system for over a year. I have 
also read books written by those at Bell Labs, such as “The C Programming Language” by Ritchie, 
Dennis and Kerninghan. Additionally, I have also looked at the popularity and design of a selection 
of the most widely-used Apple products, such as the iPhone, iPad and iMac. Similarly, I have 
looked at the popularity of some of the developments made at Bell Labs, such UNIX-based 
operating systems and the C Programming Language. I have also consulted the Bell System 
Technical Journal, a primary source published at Bell Labs, especially the edition from July-August 
1978, which talks in depth about the UNIX operating system, the C programming language, and the 
“UNIX philosophy”.  I have also looked at some of the technical documentation for Apple products, 
including the literature that they have available for consumers and developers online.

Chapter one will discuss the developments made by Bell Labs, and Chapter two will discuss the 
developments made by Apple Inc. Then, in the conclusion of this project, I am going to directly 
compare and contrast the two companies, and talk about the influence that the two companies have 
had historically. I will also talk about how the developments of both of the companies are used 
today, and draw a conclusion as to which one has been more influential. Of course, it is impossible 
to tell that with any degree of objectivity, but I can discuss links between the two companies (for 
example, the fact that some developments made at Apple may have been impossible without the 
work done at Bell Labs).

Discussion
Chapter 1 – Bell Labs
Introduction to Bell Labs
Bell Laboratories first came about as a group in 1924, when around 4000 engineers and scientists 
joined forces, in order to fully dedicate themselves to the research and development of 
communication systems (Nokia Bell Labs. (Date unknown) History 
https://www.bell-labs.com/about/history/ Date accessed 12/12/2023.). Over the years, they have 
been responsible for myriad developments in the world of communications, telephony and later 
computer science, including the C programming language and the UNIX operating system. This 
Extended project will focus on their Computer Science related developments, and how they relate to 
the field of consumer computing.

UNIX
UNIX is a multi-user, time sharing operating system that was developed at Bell Laboratories. An 
operating system (OS) is the set of software products that jointly controls the system resources and 
the processes using these resources on a computer system (Oxford Dictionary of Computer Science 
Seventh edition (2016) page 383), such as Windows (an operating system for desktop computers 
made by Microsoft), or Android (an operating system for mobile devices made by Google.) In the 
case of an operating system, multi-user means that more than one person can use it at any one time. 
Windows, for example, is not a multi-user OS, because while it can have multiple user accounts 
(more than one person can use the computer over a given period), only one person can use the 
computer at any one time (barring esoteric methods such as having a computer run 2 copies of 
Windows independently of each other, in which case each copy is still only supporting one user.)

These multi-user operating systems were of particular importance in the late 1970s, when computer 

https://www.bell-labs.com/about/history/


resources were rare and expensive, and one physical computer would often have to serve an entire 
building or company. In this case, time-sharing means something very similar to multi-user, in that 
it is intended to be used by more than one person at any given time, allowing it to “share” its time 
between multiple people who all want to use its resources. At the time, multi-user operating systems 
were the norm because it was economically unviable for a company to buy a computer for each 
employee. Furthermore, even if money was no object, at the time computers took up orders of 
magnitude more room than they do today, so having one per user would be inconvenient as well as 
prohibitively expensive.

Sadly, computer users of today cannot emulate the fully authentic UNIX operating system, because 
it is a piece of copyrighted material and would no longer work on the computer architectures of 
today without significant edits. However, many operating systems today are “UNIX-Based”, and 
therefore share many of their underlying characteristics with the original UNIX. The most obvious 
example of a UNIX-based operating system is GNU/Linux, and by both using this, and restricting 
ourselves to a small subset of the programs available today (as well as tweaking some minor 
settings), we can get a command-line interface (CLI) that functions in a very similar way to the 
UNIX of 1978.1

As you can see, the concept of “files” within a UNIX-Based OS is a very important one. In fact, 
the /proc/ folder at the root of the filesystem is made up of several “virtual files”, which when read 
(for example with the “cat” command, are generated on-the-fly by the OS, showing information 
about the current state of the computer.

1This can be reproduced much more easily by using a Virtual Machine rather than installing each operating system that 
you wish to test. 



Furthermore, physical devices (sometimes known as “block devices”) are also listed as files, in 
the /dev/ directory. For example, here, /dev/sda1 corresponds to the first partition of the first-
attached block device.

The “SD” used to mean SCSI (small computer systems interface) device, but now means any “block 
device”, such as a USB stick or floppy disk. This is a very simple example, and within the UNIX 
ecosystem there are many examples of files being used in rather unusual ways, such as the 
“/dev/zero” file, which is just a binary file containing a stream of binary zeros. Practically, this can 
be used to “zero a disk”, a process in which all the space on a magnetic disk is overwritten with “0”, 
ideally multiple times, to prevent data forensics experts from being able to read the data that the 
disk previously contained. It could also be done much faster with a physical stand-alone 
demagnetizer; however, this would be costly, inconvenient and would almost certainly significantly 
shorten the lifespan of the magnetic disk.

The ED Text editor
In a time before the advent of computer monitors, it was in the interests of software designers to 
make their software take up as little (vertical) screen space as possible. This is because UNIX (and 
therefore the “ED” editor) was designed to be used from a teletype, a machine which would 
produce computer output on a roll of paper, much like a typewriter), and would allow you to make 
inputs to the computer with a physical, typewriter-like keyboard. Therefore, line-based text editors, 
which only showed the user a line of the file at once, were the obvious way to go. To computer 
users today, ED might seem cumbersome and difficult to use, however with the alternative being 



slowly and painstakingly re-drawing the entire file each time it “fell off” the top of the paper, it was 
the only real option.

The ED editor was later succeeded by “Vi”, standing for “visual”. It was called this because it 
displays a portion of the content of the file on screen, making it significantly easier to use. It also 
has a cursor- you can “be” at different points in the file. Vi is a modal editor: the user jumps in and 
out of several different modes while editing. There is “insert mode”, In which the keys you press on 
the keyboard simply get written to the file (or “buffer”, technically they aren’t written yet), 
“command mode” which allows you to use ED-like commands for complex, “batch-style” tasks. 
The most significant mode, however, is “normal mode”, in which each key on the keyboard is 
mapped to a specific shortcut. For example, the “h”, “j”, “k”, and “l” keys move the cursor left, 
down, up and right respectively: these are by far the most used commands in any editor (moving 
between different parts of the file), and they have stood the test of time, still being used in some 
editors today. These key-bindings keep the keys on the “home row”, allegedly being more 
ergonomic, and reducing the need for modifier keys: holding down something like “control” for 
long periods of time.

The rivalry between vi and EMACS (another popular editor at the time), or the “editor wars”, 
became something of a cultural phenomenon, with even the Google search results for “vi” 
correcting the user to “Did you mean “EMACS”, and vice versa.

After “vi”, came “vim”, designed to compliment the vi experience. It had a “vi compatibility 
mode”, making it act identically to vi, and it was “portable”, meaning that it worked on other, non-
UNIX operating systems. Furthermore, it added in several other features, such as unlimited undo 
(the ability to roll back an infinite number of actions), syntax highlighting (certain key words being 
highlighted, which is especially useful for programmers), and “time travel”: the ability to revert a 
file to its state an arbitrary number of minutes ago.

Today, many common text editors have plug-ins or extensions that enable the vi-style key binds. 
Visual Studio Code, Microsoft’s IDE (Integrated development environment) has the “vscodevim” 
extension(https://marketplace.visualstudio.com/items?itemName=vscodevim.vim), for “Vim 
emulation in Visual Studio Code”, Sublime Text has “Vintage Mode” 
(https://www.sublimetext.com/docs/vintage.html) which does the same thing, and EMACS even has 
“Evil mode”- “an extensible vi layer for Emacs” (https://www.emacswiki.org/emacs/Evil).

C Programming Language
A programming language is a way of expressing instructions to a computer in a format that humans 
can understand. Programming languages are generally either “interpreted” or “compiled”. An 
interpreted language, such as Python, runs with an interpreter, which needs to be installed on the 
computer it is ran on, and executes each code statement line-by-line. All that is required to run an 
interpreted language is the source code, and the source code in most cases must be freely available 
and modifiable in order for the program to be used. A compiled language, such as C, is “compiled” 
using a “compiler” such as GCC (Gnu Compiler Collection) into something called a binary. That 
binary can then be run on any instance of the system it has been compiled for, with no regard for 



what software it has installed. Software like Microsoft Word and Adobe Photoshop are compiled: 
this can be seen by the fact that when you install them, only a “.exe” (an executable, binary file) is 
installed onto the computer.

The C programming language is perhaps one of the most famous programming languages of all 
time. It is taught in many university "introduction to programming modules", and it is considered by 
many to be a necessity to learn if a developer is ever to be truly comfortable with their system. C is 
a compiled language, which essentially means that you write the program (In C), and then use a 
compiler (such as the GNU C Compiler- GCC which is an executable usually ran from the 
command line) to translate it into machine code that the computer can understand and run. The 
compiler optimizes the program in certain ways, such as trying to use branch-less programming 
which is faster for the Processor to run. C is a statically typed programming language, which means 
that each variable has a set type when the program is compiled. For example, "4" would be an 
integer (a whole number), and "4.323" would be a float (a number with a "floating point": one with 
a decimal component). This helps to deal with issues such as the question of what happens if the 
word "55" is added to the number "55": is it "5555", because the second variable has been added to 
the end, or is it "110", because two numbers are being added together. The C language deals with 
this by having a set type for each variable, and throwing an error (at compile time, not when the 
program is being run), if an operation like this is attempted.

C is, in some ways, a very simple language, with only 32 keywords (words that are treated specially 
by the compiler, such as "if" to check if a statement is true). In contrast to this, a more modern 
language such as C++, which has 95. Each keyword is another thing that a programmer needs to 
remember and understand to be completely competent with the language, and therefore in some 
ways, C could be considered easier to learn. On the other hand, C has potential to be extremely 
complex. For example, C allows direct access and manipulation of the computer's memory, and 
things like arrays and strings can often get extremely complicated. If a process (written in C) tries to 
access a piece of memory that it should not have access to, then this can be a significant issue: not 
just in the sense that it can cause the program to crash, but also in the sense that it can be a security 
risk. If a program can read a piece of memory "belonging" to another program, then theoretically it 
could be used to read (and edit) sensitive information "belonging" to that program. These so-called 
"memory leaks" can also cause the user's computer's memory to become full, causing it to resort to 
using swap space, which is extremely inefficient. This can cause a program to either work slowly, or 
not work at all, which is bad for both the user and the developer.

Some languages such as Python, do not allow this direct memory access, and this stops developers 
from "shooting themselves in the foot" by writing "unsafe" programs. However, there are some 
situations when direct memory access is appropriate, and ends up being the most efficient way to 
complete a task, which makes C a very powerful language. Furthermore, C is good for learning how 
a computer works, because it allows those learning to program to make those mistakes and gain a 



deeper understanding of how the computer handles memory, and data structures. An array is a very 
simple example of this: a group of pieces of data all of the same size that are stored in a 
"contiguous" space in memory (all next to each other).  This means that to read a given item in an 
array, you just need to take the address of the first item in the array, and add on the size of the items 
in the array multiplied by one less than the index of the item you want to access. This seems 
complicated, and indeed it is, but in usual use, this level of depth is abstracted away from the user, 
and they only need to worry about the fact that the indexes in arrays start at 0 rather than 1. Doing 
this sort of "pointer arithmetic" helps learners to better understand these data structures, which is a 
key part of the entire field of Programming and Computer Science.

Many very influential projects have been written in the C language. For example, the Linux kernel 
(the core of the operating system) is almost entirely written in C (at the time of writing). So too, are 
the Nginx and Apache web servers, which power several of the biggest websites in the world. 
Furthermore, the GNU Compiler Collection is written in C, and while this is slightly defining C in 
terms of itself, GCC is in use for several different languages including Fortran and C++. All of the 
Microsoft office programs (MS Word, PowerPoint, Excel) are written in C, as well as LLVM: a 
compiler framework in use for some of the most popular languages and it is considered by many to 
be the go-to language for writing high-performance programs.
The BC Calculator
According to the POSIX Standard: “The BC utility shall implement an arbitrary precision 
calculator. It shall take input from any files given, then read from the standard input. If the standard 
input and standard output to bc are attached to a terminal, the invocation of BC shall be considered 
to be interactive, causing behavioural constraints described in the following sections.” For those 
using a computer with no GUI (Graphical User Interface), bc is a convenient, standardized way to 
use the processor to carry out basic calculations. Apart from the obvious, “2+2=4” questions, bc is 
also suited to more complex tasks. The “C-like” nature of bc allows the user to do things like define 
custom functions.
define f (x) {
  if (x <= 1) return (1);
  return (f(x-1) * x);
}



This is a recursive function, and with a few limitations, anything that you can do in C, you can do in 
BC. Furthermore, for those who are familiar with the syntax of C (which many are), it provides an 
accessible user interface, and a clear way to enter expressions and output their results.

Chapter 2- Apple Inc.
Apple inc. are a software and hardware company based in Cupertino, California. Established in 
1976, (Steven Levy, Britannica (2024) https://www.britannica.com/topic/Apple-Inc   (Date Accessed:   
17/02/2024) today they produce products such as the iPhone, iMac, and iPad. They have a market 
cap of $3.02 Trillion as of the time of writing, making them the biggest company in the world by 
market cap. Like Bell Labs, they have also been responsible for several developments, particularly 
in the consumer computing market and the fields of user experience. This Extended project will 
focus on their Computer Science related developments, and how they relate to the field of consumer 
computing.

Apple and the mouse

 (Image: mechanical and optical mice Encyclopedia Britannica 
https://www.britannica.com/technology/mouse-computer-device#/media/1/395079/73815)

The computer mouse, as we know it today, started off life as a mechanical device, utilising a rubber 
ball within a hemispherical housing. The modern mouse uses a much more modern optical sensor, 
and rather than relying on a physical ball moving around within the device, it uses a light sensor 
which detects reflections off of the surface by shining a laser at them.
(Britannica, T. Editors of Encyclopaedia. "mouse." Encyclopedia Britannica, October 30, 2023. 
https://www.britannica.com/technology/mouse-computer-device. Date Accessed:17/02/2024)
Mice are often used in conjunction with a graphical user interface: the user is given a pointer that 
they are free to move around the screen, which they can then use to select and manipulate graphical 
objects (such as clicking on the start menu in the bottom left in Windows 10). This contributes to 
the “desktop metaphor” that many user interfaces try to implement: this is evident in the way that 
interfaces such as the one used in Windows 10 use a folder literally named “desktop” to indicate 
things that are available with little to no navigation.

Now, Apple inc. did not invent the computer mouse: that honour goes to SRI international: (US 
Patent Office, Patent No. 3541541 (1970): 
https://ppubs.uspto.gov/dirsearch-public/print/downloadPdf/3541541) However, the Apple 
Mackintosh 128 was the first commercial device to popularize the use of the mouse with a graphical 
user interface (BBC News (2024), https://www.bbc.com/future/article/20240123-the-apple-
macintosh-was-first-released-40-years-ago-these-people-are-still-using-the-

https://www.bbc.com/future/article/20240123-the-apple-macintosh-was-first-released-40-years-ago-these-people-are-still-using-the-agingcomputers#:~:text=On%2024%20January%201984%2C%20the,Macintosh%20computer%20he%20ever%20bought
https://www.bbc.com/future/article/20240123-the-apple-macintosh-was-first-released-40-years-ago-these-people-are-still-using-the-agingcomputers#:~:text=On%2024%20January%201984%2C%20the,Macintosh%20computer%20he%20ever%20bought
https://ppubs.uspto.gov/dirsearch-public/print/downloadPdf/3541541
https://www.britannica.com/technology/mouse-computer-device#/media/1/395079/73815
https://www.britannica.com/topic/Apple-Inc


agingcomputers#:~:text=On%2024%20January%201984%2C%20the,Macintosh%20computer
%20he%20ever%20bought Date Accessed:17/02/2024). This kickstarted the widespread use of the 
mouse in consumer computing, and this in turn paved the way for mouse-focused software. This 
includes software such as Adobe Photoshop, which makes liberal use of the mouse in order to move 
different tools around the screen.

Mac OS
Like Bell Labs, Apple also developed their own operating system. At the time of writing, there is an 
apple operating system available for desktop computers, mobile phones, and tablets. It is much 
more prevalent than UNIX (and UNIX-based systems) in the consumer space, and when coupled 
with iOS (the operating system for the iPhone), it becomes apparent that 24.3% of the world’s 
consumer computers are being run on apple software. The latest version of MacOS- Sonoma- has a 
fully featured desktop environment, and a range of useful features such as new screensavers2, 
desktop widgets, and interaction with other apple devices such as the iPhone (Apple Inc., Official 
Apple Documentation, https://www.apple.com/uk/macos/sonoma/   Date Accessed:17/02/2024  ).

Built in to macOS are several examples of apple software. “Terminal” is a terminal emulator that 
aims to give a UNIX-like experience, tailored towards software developers and power users.(Apple 
Inc., Official Apple Documentation, https://support.apple.com/en-gb/guide/terminal/welcome/mac 
Date Accessed:17/02/2024).  Terminal gives an easy way for users to run and design scripts to make 
their Apple device perform predetermined routines. It also allows users to connect to remote servers 
using technology such as SSH (Secure Shell) with a graphical interface (rather than the user typing 
in a specific shell command to invoke the SSH client), and this feature is useful for many software 
developers. This is because a common workflow in many tech companies is to have a 
“Development server” which stores the files that need to be worked on, and has enough computing 
power to build and run examples of the software. The developers then remotely access this server, 
and run commands on it. One major advantage of this is that developers can work completely from 
home, rather than needing to use specific hardware that might be elsewhere. Furthermore, the 
convenience of remote access in “Terminal” is helpful for website administrators, because it can 
allow them to make on-the-fly changes and optimizations to a web server.

The fact that remote access is built into the terminal itself, rather than being a separate piece of 
software (such as OpenSSH, a popular UNIX SSH client) (https://www.openssh.com/) is evidence 
of Apple’s different design philosophy. Apple opts for one monolithic piece of software, rather than 
many small programs all designed to do exactly one thing. There are reasons that a user might want 
to use a separate SSH client, such as to be able to customize the encryption algorithms that it uses, 
or because the commands are familiar to them (Arch Linux Wiki (Date 
Unknown),https://wiki.archlinux.org/title/OpenSSH#Tips_and_tricks   Date Accessed:17/02/2024  ). 
This design also means that “Terminal” is able to be less stripped-down than a UNIX-based 
terminal: if a UNIX terminal needed to be optimized for space, then a user could simply remove any 
unneeded software using a package manager (such as APT or Pacman), and continue using the 
terminal with no adverse effects. Because “Terminal” has remote server access built in, there is no 
way to be able to use “Terminal” without taking up the space needed for all of the remote access 
overhead. In reality, this is a spurious example: a zipped version of all of OpenSSH only runs to 
about 500Kb, which is not enough to make much of an impact on a modern storage drive, however 
it does speak to the design of the software, and how customizable it is possible to make it.

When compared to the UNIX terminal experience, there is little doubt that while MacOS provides a 

2 These are not screensavers in the strictest sense: they are designed more for aesthetic purposes rather than to “save” a 
monitor from burn in. Traditional screensavers are not necessary on the now common LCD monitors because the 
mechanism for burn-in to happen is not available, however on OLED monitors common on several Apple devices, it 
can be an issue, and a screensaver can be needed.  

https://wiki.archlinux.org/title/OpenSSH#Tips_and_tricks
https://www.openssh.com/
https://www.apple.com/uk/macos/sonoma/
https://www.bbc.com/future/article/20240123-the-apple-macintosh-was-first-released-40-years-ago-these-people-are-still-using-the-agingcomputers#:~:text=On%2024%20January%201984%2C%20the,Macintosh%20computer%20he%20ever%20bought
https://www.bbc.com/future/article/20240123-the-apple-macintosh-was-first-released-40-years-ago-these-people-are-still-using-the-agingcomputers#:~:text=On%2024%20January%201984%2C%20the,Macintosh%20computer%20he%20ever%20bought


more streamlined and cohesive experience, it is significantly less customizable, and provides less 
ways for the user to optimize what software they run.

The Lightning Connector
Up until 2024, all iPhone, and the majority of iPad produced use a power connector called the 
Lightning connector (BBC News (2024)https://www.bbc.co.uk/news/technology-58665809 Date 
Accessed: 17/02/2024). The lightning connector is a digital connector standard, that can transfer 
both power and data over the same connection. It can be inserted either way up, and the plug is 
made up of one solid, smooth piece of metal with several flat metal contacts on either side. 
Compared to micro USB, the lightning connector is more convenient to use, and more durable due 
to the fact that micro USB relies on metal pins that bend down when inserted into a device.

The lighting connector is able to provide more power than micro USB (12W rather than 9W), 
(Anker, 2023 https://www.anker.com/blogs/cables/what-is-a-lightning-cable-ultimate-cable-
guide)which enables faster charging and allows more power-hungry peripherals to use it. It also 
provides data transfer speeds of 480Mbps3 (Apple Inc. 
(2024)https://support.apple.com/en-us/109044), which is matched by the maximum speed of USB 
2.0 (the standard which micro USB is a part of) (Make Use Of (2023) 
https://www.makeuseof.com/usb-c-data-transfer-speeds-how-fast-can-it-go/). This means that, on 
USB 2.0 ports, which are still common on many computers4, if a connector that enabled higher data 
transfer speeds was used, then it would not provide any advantage, since the USB 2.0 port would 
act as a bottleneck, capping the speed at 480 Mbps.

In 2021, the EU (European Union) ruled that, in order to reduce E-waste (Electronic waste), all 
mobile phones and small electronic devices must move to USB-C: a new standard from the USB 
family. USB-C can also be inserted either way up, but provides technical specifications that vastly 
surpass both Lightning and Micro USB. USB-C can, in theory, reach transfer speeds of up to 80 
Gbps (10 Gb/s), however in reality this is unlikely, because it relies on the cable being made to 
USB4 Gen4 standards, and on both devices having support for the latest standard built in. However, 
the use of USB-C does give manufacturers room to progress, and as the EU said, allows users to use 
their existing charging hardware when they buy a new device.

M-Series Silicon Chips
Nearly every computer contains a CPU (Central Processing Unit). Often referred to as the “Brains” 
of the computer, the CPU carries out the instructions laid out by computer programs, and handles 
tasks such as running the operating system and some programs. In most consumer desktop 
computers (rather than laptops), the CPU is a component like any other: it is inserted by the 
manufacturer into a socket on the motherboard, and can be swapped out for a different CPU, 
provided that it will fit. CPUs work by using transistors, which generate heat. Therefore, it is 
important for computer manufacturers to provide ways of adequately cooling the CPUs, to prevent 
“thermal throttling”. This can be done in several ways, but the most popular is by far air cooling: a 
heat sink (a large block of thermally-conductive metal, usually with fins to help dissipate the heat) 
will be bolted onto the IHS (Integrated Heat Spreader) of the CPU, and fans will be used to blow 
cool air through the heat sink to help carry off heat. Most desktop computers are designed from the 
ground up with this in mind, with some sort of a plan worked out for “airflow” through the case. 
This is the main reason that computers have fans at all: because the CPUs require constant active 
cooling.5

3 Mbps is megabits per second, so this is in effect 60 Mb/s (Megabytes per second).
4 Technically, if they are not coloured blue, then they are only rated for USB 2.0, although this standard is not always 

followed.
5 Some other components (such as PSUs, GPUs, and sometimes memory and storage) can require active cooling too, 

however usually only PSUs (Power Supply Units) contain fans in consumer computers, and the fans are built into 



In 2020, Apple announced the release of the M1 Sillicon chip. Created specifically for the Mac, it 
combines multiple components, which would ordinarily be inserted onto the motherboard 
individually, into one chip: the CPU, the GPU, and the Memory. The fact that these three crucial 
components were all now in the same place reduced data transfer speeds between the components: 
the instructions from the memory could get to where they needed to be to be processed quicker, so 
more could get done in less time. (Apple Inc., Apple Documentation 
(2020)https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/ Date Accessed: 17/02/2024) 
The integrated chip was also easier to cool, because all the components that needed cooling were in 
one place, and could be actively cooled by one heat sink. This helps save money on manufacturing, 
because the dense, thermally conductive metals used to build heat sinks are expensive and difficult 
to shape. It could, in theory, also make the computers more reliable, because they need fewer 
moving parts (fans) which could fail. The M1 chip has been succeeded by the M2 Silicon, designed 
to be more of the same, with many of the same advantages.

Both the M1 and M2 chips use the ARM instruction set (a list of instructions that the CPU can carry 
out), rather than the more traditional x86_64 set, used by the majority of modern Intel and AMD 
desktop CPUs. The ARM instruction set is considered a type of RISC (Reduced Instruction Set 
Computing), because it has significantly less instructions than x86_64. This makes it more simple to 
write, however some would argue that it is more difficult to optimize, because it gives experienced 
developers less options. Furthermore, because it requires less transistors, the ARM architecture is 
usually more power-efficient, because it requires less transistors to enable all of its instructions. 
ARM Assembly (the language used to communicate with ARM chips at a low level), while simpler 
to write than x86 assembly, is much less standardized, and this can make code written for ARM 
chips less portable (less able to be run on a different computer than it was designed for.)

The ARM instruction set is usually used by mobile devices, and hobbyist devices such as the 
Raspberry Pi. At the time of writing, there is no official version of Windows for the ARM 
architecture, nor are there versions of many programs that will run on a non-x86 device. While this 
does mean that modern Mac computers are less versatile: a user cannot easily boot a non-apple 
Operating system on them and start using different programs, it does encourage developers to start 
building their programs for this new architecture. This is good, because it provides competition with 
the two major CPU manufacturers: Intel and AMD, and because it forces innovation onto program 
designers if they wish to deploy to Apple devices.

File Systems
File systems are standards that govern the way that files are stored on a device. They specify things 
like what metadata is stored about each file (such as the precision and method of storage of the “last 
accessed” date), and the partitioning scheme used on the drive (usually either GPT or MBR). 
FAT32, a popular file system for removable media, has certain limitations, such as the fact that it 
can only support files up to 4Gb. (Microsoft Corporation, Microsoft FAT Specification (2005), Page 
27) This means that it is unable to store most movies at a 4k resolution without resorting to splitting 
the file in two6. There are many other, more modern file systems such as NTFS from Microsoft, and 
Apple use their own as well.

APFS, the Apple file system, is a proprietary file system used by Apple. It is only natively 
supported on Mac OS, and is the default file system on all Mac computers. There are four main 
versions of APFS: (Apple Inc. (Date Unknown) 
https://support.apple.com/en-gb/guide/disk-utility/dsku19ed921c/mac Date Accessed: 17/02/2024)

the unit.
6It is possible to use software to have a file technically be split into multiple pieces, but act as one file. However, since 
the only advantage of using a file system such as FAT is compatibility, this is rarely the best course of action.

https://support.apple.com/en-gb/guide/disk-utility/dsku19ed921c/mac


 Regular APFS
 Encrypted APFS, which is simply an encrypted APFS volume
 Case-Sensitive APFS, where file and folder names are case-sensitive: “FILE” would be a 

different file from “File”, which would be different from “file”.
 Case-Sensitive, Encrypted APFS, which is simply Case-Sensitive APFS, but encrypted.

The Apple File System does provide some advantages over some others, especially FAT as 
mentioned earlier, however its proprietary nature and Apple’s refusal to use an already existing file 
system, as well as insisting that all drives with MacOS running on them must be formatted with 
APFS mean that overall, APFS makes computers more difficult for consumers to use.

Conclusion
In conclusion, I would say that, while both companies have had a great deal of impact upon the 
world of consumer computing and computer science, Bell Labs have had a slightly larger impact 
than Apple Inc. This is because many of their developments are widely used in all computers today, 
not just those made by a specific company, and because many of their developments have paved the 
way for Apple to make some of theirs. Furthermore, the impact of Apple Inc. as a company on the 
world of computer science has been lessened by the fact that many of their products are 
prohibitively expensive, making their developments less easily accessible for consumers.

While Apple Inc. is certainly more of a household name, many of the modern-day infrastructure that 
we rely on today would not exist without the use of UNIX-based operating systems and the C 
programming language. While the developments of Apple have certainly been influential, many of 
them are superficial and have alternatives that can be used. Furthermore, many of the hardware and 
software products that are currently produced by Apple Inc. could be said by some to be actively 
slowing the development of new technology. One such example of this is Apple’s reluctance to 
forgo the use of the lightning connector on their devices until being forced to by the EU (European 
Union). 

Bell Laboratories are, by comparison, nowhere near as famous. However, much of the modern 
computing world is built on their developments. The C programming language is used to create a 
great deal of the software used in our society’s most important applications, and UNIX-based 
operating systems are the standard for nearly all enterprise-grade hardware and scientific computing 
to this day. The key bindings from the ED text editor endure even now, in editors such as Vim, or in 
the numerous extensions for nearly every other piece of text-editing software. 

Both companies have made many more developments that I have not had time to write about. This 
is because it would be beyond the scope of an essay of this length to go into details of every 
development made by these two massively influential companies. Bell Labs pioneered the first 
lasers and transistors (among other things), and Apple have produced a whole host of professional-
grade software such as Logic Pro and Final Cut. This project aims to present a few of the most 
influential developments made by each company, and if the full extent of each company’s 
contribution to Computer Science had been evaluated, then the conclusion reached at the end of this 
project may have been different. 

Project Evaluation
Completing this project has taught me a lot about conducting research, critical analysis of sources, 
and writing a formal paper. It has been very interesting to look into the different ways that two 
companies design products, and how the use of computers has changed over time, from the time of 
Bell Labs to modern day. I have also learned a lot more about the general field of Computer 
Science, which is sure to help provide a good basis for my learning in A-level Computer Science. I 
have learned a lot of time management and project planning skills throughout the creation of this 



Extended Project, and I have no doubt that the skills that I have learned here will come in useful to 
me during the rest of my time at Sixth Form, during my time at university, and during my future 
career. Furthermore, I have learned a lot that I wouldn’t usually touch on with the A-levels that I 
have chosen: for example writing a paper, and citing sources which are not usually addressed in 
more science and theory-focused qualifications.

While making this project, I have been especially pleased with the quality of information that I was 
able to present on the UNIX operating system. It was brilliant to be able to create my own examples 
to show the reader, and I think that it helped to illustrate a potential workflow of a user of that 
operating system rather than just describing it. Making those examples also taught me a lot about 
using Virtual Machines, and using UNIX-based operating systems in general, as well as the skills of 
being able to construct an authentic, period-accurate software environment in order to best emulate 
the computers of the time. 

If I were to redo this project with the benefit of the experience gleaned this time round, I would 
either narrow my focus further, or choose a different format to present the information. I feel that 
this would allow me to present a wider range of developments of either company, as well as 
allowing me to investigate each development in more detail. This would allow me evaluate the 
precise impact that each development has had, and create and show more examples of that 
development in use. I would also try to conduct more primary research, perhaps using a survey of 
my peers to find out the prevalence of the two companies’ developments in the context of my 
school, or reaching out to experts in both subjects, and those who use the software on a daily basis, 
in order to find out more about the usefulness of each development. 

Literature Review
The Bell System Technical Journal
Throughout this project, a large amount of the information concerning the UNIX operating system 
and the C programming language has been from the Bell System Technical Journal, particularly the 
edition from July-August 1978. The Bell system technical journal is the internal journal for Bell 
Labs, meaning that it has a high degree of reliability: it is an accurate presentation of the knowledge 
available to them at the time. In terms of bias, while it is made by those with a vested interest in 
Bell Labs products, it was never intended to be shown to the wider public, and therefore it is void of 
any overt bias against other products. The aim of the creation of this journal was not to convince or 
persuade anyone of anything, rather to inform in the most efficient manner possible. It aims to be 
objective, and does not fail to mention issues or shortcomings with any of the products that it 
mentions. 

The Bell System Technical Journal may be less reliable than something published closer to the 
present day, because of the fact that it was not fact checked by anyone outside of Bell Labs. This 
means that there may be issues with some of the material within it that some of the Bell Labs 
employees were unable to see, but would have been caught had it been more available for review.

It is influenced by those at Bell Labs at the time, which makes it a very useful primary source, and 
those who wrote it have a high degree of expertise in the subject (often they were the ones who 
developed the product, giving them a deep understanding of how it functioned). The Bell System 
Technical Journal has been a valuable piece of information throughout this project, and has been 
concise and factual enough to use several times, both in research and in referencing. 

My own experiences with Bell Labs software
Throughout this project, I have had the opportunity to try out and use a great deal of software. I 



have developed software using the C programming language, and I have used a UNIX-based 
operating system daily for several months. This has enabled me to see the user experience of using 
Bell Labs products, and how they work on a deep level. There are many variants of UNIX-based 
operating systems out there, and I deliberately chose a “Do It Yourself” distribution, so that I could 
learn more about the inner workings of my system. Things I have done using this system include 
creating a backup system (to copy important files to a different location) using shell scripting, and 
running virtual machines (an operating system inside an operating system) using KVM/QEMU. 
This has allowed me to gain a deeper understanding of how computers as a whole, and particularly 
UNIX-based systems run on a low level, and showed me why Bell Labs products can be so useful. 

During my time using Bell Labs software, the built-in documentation, called manual pages, has 
been extremely helpful to me. Often referencing the POSIX standard, these manual pages feature 
in-depth guides on how to use a whole host of Bell Labs products. Furthermore, there is a large 
amount of free and open-source information concerning Bell Labs software, information which a 
user almost always needs to consult at some point in order to understand and solve an issue. 
Websites such as the Arch Wiki (a Wikipedia-style repository of information centred around the 
Arch Linux distribution), and the Linux Kernel mailing list (an email list designed to help kernel 
users and developers discover and solve issued with the Linux kernel, as well as implementing new 
features.) 

I understand that my experiences with Bell Labs software will not necessarily reflect the 
experiences that the general public would have if they were to use it. My use cases for computers in 
general is quite unusual, and a lot of the software that I have used during the course of this project 
has had an extremely steep learning curve. Many users would find it annoying, and perhaps almost 
unusable, to have, for example, an operating system that needed to be manually updated from the 
command line. Furthermore, I have no idea what any of the software that I have tested would work 
like for someone with a different use case, such as video editing or audio production. Therefore, my 
personal experiences with Bell Labs software are biased towards the software, perhaps showing it in 
a more positive light than it deserves. 

The C Programming Language (Book)
The C Programming Language, by Brian W. Kernighan and Dennis M. Ritchie has been an 
invaluable resource in the research for this project. In the preface, it states that “C is not a big 
language, and it is not well served by a big book.” This methodology means that the book is concise 
enough to read for a project like this, while still being informative enough to get all the information 
that I need. The C programming Language (the book) was written, in part, by Dennis Ritchie, one 
of the creators of the actual C programming language. This makes it extremely reliable, because no 
one else knows the ins and outs of a product like that quite like its creator. The book is also able to 
go into detail about the thought process behind a lot of the features in the language, such as the fact 
that arrays start at zero, or the fact that structures were intended to emulate things like “payroll 
records.” 

“The C programming language” is obviously biased towards the language it refers to, thanks in 
large part to the fact that one of the main authors played a part in its development. Furthermore, 
because it was written in 1988, it fails to address many of the questions that a more modern 
audience may have. It completely fails to mention modern networking at all, and spends all of 
chapter 8 talking about the UNIX system. There is no mention of how to develop a C program for 
Windows, MacOS or any mobile platform, and while this is of course not the fault of the author, it 
still makes the book less useful in the modern day.

In a way, The C Programming language can be seen as a primary source, due to the fact that it was 
written by those who were actually there at the time. The book was written in order to inform the 



public, and not to persuade anyone of anything, and this makes it more reliable and less biased than 
it would otherwise be. It is influenced heavily by the philosophy of those working at Bell Labs at 
the time, and has been an extremely valuable resource while working on this project. While I have 
not sourced it directly, it acted as a valuable jumping-off-point for my own experimentation, and 
gave me a great deal of ideas of features to show in this project. 

Apple’s Own Documentation
The main source that I have used to find out about Apple products, especially the technical details 
needed for comparisons with other software, has been Apple’s own documentation. The obvious 
issue with using this as a source is bias: anything made by the Apple company itself is going to be 
heavily biased towards Apple product. While I highly doubt that anyone at Apple would introduce 
factual inaccuracies deliberately, there is no question that issues with Apple software and hardware 
may be overlooked, or ignored in the interests of making the company look better in the public eye. 

The Apple documentation, in my experience, has been disjointed, hard to navigate, and lacking in 
structure. There is a great deal of promotional information, using Apple-created buzzwords such as 
“Retina Display”, and a shockingly low amount of actual, end-user focused documentation. 
Furthermore, there is a clear lack of service documentation- documentation designed for those 
repairing an Apple product- due to Apple’s negative attitude towards third-party, unapproved repair 
shops. This is a case of Apple making it deliberately harder to use their products, and it casts a 
shadow of doubt upon their entire documentation process. It is hard to believe that the people 
behind the documentation are writing it solely for the purpose of helping consumers, when they 
refuse to give out repair guides to anyone except their own shops. 

The Apple documentation has been somewhat useful in verifying information about Apple products, 
especially hardware. However, it’s reliability is questionable, and it has a very clear bias. Therefore, 
while I have consulted it many times during the creation of this project, it has only been somewhat 
useful, and I have only referenced it when it was clearly correct, such as for numerical statistics and 
product announcements. 

Bibliography
 Nokia Bell Labs Website: History page (Nokia Bell Labs. (Date unknown) History 

https://www.bell-labs.com/about/history/ Date accessed 12/12/2023)
 Oxford Dictionary of Computer Science Seventh Edition (2016) page 383
 Britannica (2024), Steven Levy: https://www.britannica.com/topic/Apple-Inc     Date 

Accessed: 17/02/2024
 Image of mechanical and optical mice, Britannica (2024) 

(https://www.britannica.com/technology/mouse-computer-device#/media/1/395079/73815     
Date Accessed: 17/02/2024)

 Britannica (2024), (https://www.britannica.com/technology/mouse-computer-device  .   Date 
Accessed:17/02/2024)

    (US Patent Office, Patent No. 3541541 (1970): 
https://ppubs.uspto.gov/dirsearch-public/print/downloadPdf/3541541  ,   Date 
Accessed:17/02/2024)

 (BBC News (2024) (  https://www.bbc.com/future/article/20240123-the-apple-macintosh-  
was-first-released-40-years-ago-these-people-are-still-using-the-agingcomputers#:~:text=On
%2024%20January%201984%2C%20the,Macintosh%20computer%20he%20ever
%20bought     Date Accessed:17/02/2024, https://www.bbc.co.uk/news/technology-58665809 
Date Accessed: 17/02/2024)

 (Apple Inc., Official Apple Documentation (https://www.apple.com/uk/macos/sonoma/ Date 

https://www.apple.com/uk/macos/sonoma/
https://www.bbc.co.uk/news/technology-58665809
https://www.bbc.com/future/article/20240123-the-apple-macintosh-was-first-released-40-years-ago-these-people-are-still-using-the-agingcomputers#:~:text=On%2024%20January%201984%2C%20the,Macintosh%20computer%20he%20ever%20bought
https://www.bbc.com/future/article/20240123-the-apple-macintosh-was-first-released-40-years-ago-these-people-are-still-using-the-agingcomputers#:~:text=On%2024%20January%201984%2C%20the,Macintosh%20computer%20he%20ever%20bought
https://www.bbc.com/future/article/20240123-the-apple-macintosh-was-first-released-40-years-ago-these-people-are-still-using-the-agingcomputers#:~:text=On%2024%20January%201984%2C%20the,Macintosh%20computer%20he%20ever%20bought
https://ppubs.uspto.gov/dirsearch-public/print/downloadPdf/3541541
https://www.britannica.com/technology/mouse-computer-device#/media/1/395079/73815
https://www.britannica.com/topic/Apple-Inc
https://www.bell-labs.com/about/history/


Accessed:17/02/2024, https://support.apple.com/en-gb/guide/terminal/welcome/mac Date 
Accessed:17/02/2024, https://support.apple.com/en-us/109044  ,   Date Accessed: 20/02/2024, 
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/     Date Accessed: 
17/02/2024, https://support.apple.com/en-gb/guide/disk-utility/dsku19ed921c/mac     Date 
Accessed: 17/02/2024)

  Arch Linux Wiki (https://wiki.archlinux.org/title/OpenSSH#Tips_and_tricks Date 
Accessed:17/02/2024).

 Anker (2023) (  https://www.anker.com/blogs/cables/what-is-a-lightning-cable-ultimate-  
cable-guide     Date Accessed: 19/02/2024)

 (Make Use Of (2023) )  https://www.makeuseof.com/usb-c-data-transfer-speeds-how-fast-  
can-it-go/

 Make Use Of (2023) (https://www.makeuseof.com/usb-c-data-transfer-speeds-how-fast-can-
it-go/     Date Accessed: 05/02/2024) 

 Microsoft Corporation, Microsoft FAT Specification (2005), Page 27

https://www.makeuseof.com/usb-c-data-transfer-speeds-how-fast-can-it-go/
https://www.makeuseof.com/usb-c-data-transfer-speeds-how-fast-can-it-go/
https://www.makeuseof.com/usb-c-data-transfer-speeds-how-fast-can-it-go/
https://www.makeuseof.com/usb-c-data-transfer-speeds-how-fast-can-it-go/
https://www.anker.com/blogs/cables/what-is-a-lightning-cable-ultimate-cable-guide
https://www.anker.com/blogs/cables/what-is-a-lightning-cable-ultimate-cable-guide
https://wiki.archlinux.org/title/OpenSSH#Tips_and_tricks
https://support.apple.com/en-gb/guide/disk-utility/dsku19ed921c/mac
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://support.apple.com/en-us/109044

	Abstract
	Introduction
	Discussion
	Chapter 1 – Bell Labs
	Introduction to Bell Labs
	UNIX
	The ED Text editor
	C Programming Language
	The BC Calculator

	Chapter 2- Apple Inc.
	Apple and the mouse
	Mac OS
	The Lightning Connector
	M-Series Silicon Chips
	File Systems


	Conclusion
	Project Evaluation
	Literature Review
	The Bell System Technical Journal
	My own experiences with Bell Labs software
	The C Programming Language (Book)
	Apple’s Own Documentation

	Bibliography

